Seasonal Separation of African Savanna Components Using Worldview-2 Imagery: A Comparison of Pixel- and Object-Based Approaches and Selected Classification Algorithms
نویسندگان
چکیده
Separation of savanna land cover components is challenging due to the high heterogeneity of this landscape and spectral similarity of compositionally different vegetation types. In this study, we tested the usability of very high spatial and spectral resolution WorldView-2 (WV-2) imagery to classify land cover components of African savanna in wet and dry season. We compared the performance of Object-Based Image Analysis (OBIA) and pixel-based approach with several algorithms: k-nearest neighbor (k-NN), maximum likelihood (ML), random forests (RF), classification and regression trees (CART) and support vector machines (SVM). Results showed that classifications of WV-2 imagery produce high accuracy results (>77%) regardless of the applied classification approach. However, OBIA had a significantly higher accuracy for almost every classifier with the highest overall accuracy score of 93%. Amongst tested classifiers, SVM and RF provided highest accuracies. Overall classifications of the wet season image provided better results with 93% for RF. However, considering woody leaf-off conditions, the dry season classification also performed well with overall accuracy of 83% (SVM) and high producer accuracy for the tree cover (91%). Our findings demonstrate the potential of imagery like WorldView-2 with OBIA and advanced supervised machine-learning algorithms in seasonal fine-scale land cover classification of African savanna.
منابع مشابه
Comparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)
In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملComparison of Performance in Image Classification Algorithms of Satellite in Detection of Sarakhs Sandy zones
Extended abstract 1- Introduction Wind erosion as an “environmental threat” has caused serious problems in the world. Identifying and evaluating areas affected by wind erosion can be an important tool for managers and planners in the sustainable development of different areas. nowadays there are various methods in the world for zoning lands affected by wind erosion. One of the most important...
متن کاملAnalysis Accruing of Sentinel 2A Image’s Classification Methods Based on Object Base and Pixel Base in Flood Area Zoning of Taleqan River
Flood zonation mapping is one of the priorities for the soil and water management, which Remote Sensing (RS) capabilities are very applicable to this issue. The main objective of this research was study of accuracy of the Object oriented and Pixel based methods for flood zonation mapping in the Taleghan River basin. Therefore, the Sentinel 2A satellite image of the study area classified using s...
متن کاملA Comparative Analysis of Machine Learning with WorldView-2 Pan-Sharpened Imagery for Tea Crop Mapping
Tea is an important but vulnerable economic crop in East Asia, highly impacted by climate change. This study attempts to interpret tea land use/land cover (LULC) using very high resolution WorldView-2 imagery of central Taiwan with both pixel and object-based approaches. A total of 80 variables derived from each WorldView-2 band with pan-sharpening, standardization, principal components and gra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016